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ABSTRACT

This document represents notes that I have collected over the

past decade describing, surface wave spectra. When I decided to put

these notes into a convenient form for my own use, it seemed that this

might be useful to others. It is not claimed to be thorough and care-

fully checked, nor is it polished as a journal paper would be. -There
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1.0 SURFACE WAVE DISPLACEMENT SPECTRA

We consider a "large" ocean of rectangular area A. (periodic

boundary conditions) with a plane surface at z-0 (z>0 is upl). The

vertical displacement from equilibrium is C(z,t). This is expressed

as a Fourier expansion,

c(t-t) - [akei(kX-Wt)-C.C.] (1.1)2

Here x - (x,y) and

W(k) - [k(g+yk2)]y (1.2)

is the linear wave dispersion relation. We use mks units, so

g-9.8m/s2 and Y(-T/p) is 7.5 x 10- 5m3/s2 (T-7.5 x 10- 2n/m represents

a nominal value for the surface tension of uncontaminated water).

For linear waves the ak(t) are constant in time.

The point of writing (1.1) as done is that k is in the direc-

tion of wave propogation.

The power spectrum or displacement, with direction of propoga-

tion accounted for, is

V(k) - A. [1< I ak 2  > >] (1.3)
(21r) 2



<C2> - fd2k(k) 1 2 > (1.4)

The symbol "<... >" represents an average over an ensemble of oceans.

The spectrum * is often expressed in the form

1(k) - S(k)G(k,O), (1.5)

where k - (k,e) with 8-0 corresponding to the wind direction. By

convention,

1r
fGdO I 1 (1.6)

-IT

The spectrum is also expressed in terms of frequency using (1.2) and

the relation

S(k) k dk - Sf(W) dW . (1.7)

For linear waves the energy/unit area is

E(k) - 2 k) (1.8)
k

and the action density is

F(k) - E(k)/W (1.9)
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To describe the evolution of the action spectrum F in the pre-

sence of a large scale surface current Us(x,t) the radiative

transport equation is frequently used:

[a + x VX + k - Vk]F(k,x,t) - St - Sin + Sw + Sv . (1.10)
at

Here the ray trajectories are calculated from the equations

x - VkH

k - -VXH

H - W(k) + k Us •.)

On the right-hand side of (1.10), Sv represents the decay rate

due to viscosity, Sw the wind growth rate, and Sin the effects of

nonlinear wave-wave interaction.
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2.0 GROWTH AND DECAY OF SURFACE WAVES

In this section we discuss the right-hand side of (1.10). The

decay rate due to viscosity is (see, for example, Phillips, i977]

Sv - -4Vk 2F . (2.1)

We shall use here the nominal value of 1.1 x 10- 6m 2/s for the kine-

matic viscosity V. Surface contaminents may require modification of

this value.

The growth due to the wind stress is described by the term Sw .

The wind stress on the surface is

TV - Pa u* 2  (2.2)

where Pa is the density of air and u* is the friction velocity. We

sh'all use here the values given by Garratt (1977):

u* - U(10)[l + 0.089 U(10)] , (2.3)

where U(10) is the wind velocity at 10m above the surface. At a

height z we shall use the logorithmic scaling relation

U(z) - U*ln(z/z.) (2.4)
K
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This is appropriate in the atmospheric surface boundary layer for

conditions of neutral stability (a condition that tends to be valid

over oceans; see Panofsky and Dutton, 1984, for a detailed

discussion and references). An illustration of wind flow over a

Minnesota wheat field (Kaimal, et al. 1976) is shown in Figure 2-1,

where the planetary boundary layer height Zi - 1250m.

The quantity K 9 0.4 in (2.4) is the von Karman constant and

Z. is the "surface roughness"

Z. - 0 .0 14u*
2  (2.5)
-

(Garratt, 1977). This value is appropriate for the oceans. Over

land, terrain topology can lead to very different values (see for

example, Panofsky and Dutton, 1984).

Several recent analyses of the wave growth data have used the

form implied by the Miles Theory,

Sw - 0(k)F. (2.6)

Empirical models for 8 are deduced. To understand the basis for

doing this, we briefly review the Miles Theory. Write
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*- eikX 0. (2.7)

where $ is the velocity potential. The linearized Bernoulli

equation and the kinematic boundary condition read

at+ & + (g + Vk2)C - 0

t " 0 (2.8)

A linear relation is postulated to relate the pressure variation to

the displacement,

p._ p( + ipg) ((2k)c . (2.9)

On replacing 8 by (-il), we obtain the dispersion relation

&I a w[ + . (a + ilig)] (2.10)
2

The rate 0 in (2.6) is seen to be

8 - lgw . (2.11)
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Experimental techniques to measure wave growth vary, and

include wave tanks and field measurements. The growth may be

observed directly, using wave staffs, laser slope meters, electro-

magnetic waves, etc. (Donelan et al. 1985, and, Larson and Wright,

1975). An alternative method is to measure the pressure variation p

and displacement C. Fourier transform these, and deduce the parame-

ters (C, )1g) in (2.9). This has been done, for example, by Snyder,

et al. (1981), Hsiao and Shemdii (1983), and Hasselmann et al (1986).

An extensive review of wave growth data published prior to 1980

was made by Plant (1981). This data included wind speeds to 15m/s

and frequencies in the range

< W < 40r . (2.12)
U(lO)

He suggests the model

Op = 0.04(u*) 2W cos . (2.13)
V

Here V - W/k and $ is the angle between wind and wave direction.

Evidence for the factor "cos $" is very weak. For higher wind

speeds, Amorocho and de Vries (1980) describe some growth rate data.
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Hsiao and Shemdin (1983) deduce the model

0. - 1.4 x 10- 4 ()1_1)2 W (2.14)

=1 0.85[U(I0 ) ] cos . (2.14)
V

This is based on measurements in the range

I < p < 7, 5 < U(10) < 14m/s . (2.15)

Donelan and Pierson (1987) proposed a model valid for the capillary

range, based on the data of Larson and Wright (1975). This tank

data included wavelengths A in the range

0.7 < A < 7.0cm , (2.16)

and

0.17 < u* < 1.2m/s . (2.16)

Donelan and Pierson purpose

D - 2.3 x 10- 4 [U(A/2) - 1]2 (2.17)

D V

The use of tank data to deduce growth rates on the generally much

rougher ocean surface has an unknown validity.
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A comparison of the above growth rates is illustrated in

Figures (2), (3), and (4). The principal discrepency is for A in

the centimeter range for which (2.13) and (2.14) are not expected to

be valid. For long wavelengths the agreement is fair. For waves in

the 10's of meter range generation by shorter waves is considered by

some to be important.

The term Sin in (1.10) describes the effects of non-linear

wave-wave interactions. The most elaborate model for this has been

given by Hasselmann, who used an assumption of weak interactions and

cummulant closure to obtain a Boltzmann-like integral. Some recent

calculation using the Hasselmann theory have recently been published

by van Gastel (1987 a,b).

The complexity and uncertain accuracy of the Hasselmann theory

has led to some simplified models. A very simple phenomenological

model was suggested by Hughes (1976), which was generalized by

Phillips (1985). When F is sufficiently close to an equilibrium

form, Feq , these models may be approximated as

ST - -OT(F-Feq) (2.18)

Estimates for OT were made by Watson (1986) using non-linear wave

theory. These are reproduced in Figure 2-5.
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Figure 2-5. The decay rate constant OT of (2.18) as a function of wind speed wavelengths X.
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3.0 EQUILIBRIUM SPECTRAL MODELS

Some time ago Phillips suggested that under conditions of ade-

quate fetch and wind duration wave spectra tend toward an

equilibrium state. He argued that there should be an equilibrium

range between waves moving at wind speed [U(10)ZV(k)] and the region

of viscious decay. In this domain he proposed that

S - constant
k4

the constant being dimensionless (no relevant parameters!) and the

power of k determined by dimensional arguments. Kitaigorodskii (in

Phillips and Hasselmann, 1986) has recently reviewed the philosophy

of equilibrium spectrum models.

Pierson and Moskowitz (1964) proposed a more elaborate spectrum

based on Phillips' ideas:

S - Sp(k) - (4 x 10- 3 ) exp [-.74(k*/k) 2 ] , (3.1)
k4

where

k. - .. . (3.2)
u2(i0)

3-1



The JONSWAP experiment led to the replacement of the

Pierson-Moskowitz exponential in (3.1) by the "peaked" exponential

e-r, where

r = 0.74 (k*)2 - 0.5exp[- (p/jt - "9p-) 2] (3.3)

k 0.4k*

Increasing evidence for change led Phillips (1986), Donelan et

al. (1985), and others to give up the k- 4 spectral form by a factor of

Vi. They proposed that

S - SD(k) -1 - e-r (3.4)

a-7/ 2k.-1/ 2 e-r

where a reasonable choice for the dimensional constant a is

a - 2 x 10- 3  (3.5)

Donalen et al. suggest some generalization of (3.4) for limited fetch

conditions.

Observation by M. Banner (private communication, see also

Donalen and Pierson, 1987) suggest that for k1 < k < k2 , a reaso-

nable model for S is

S SB(k) (3.6)
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where G'is chosen to give

SD(kl) - SB(kl) (3.7)

at

kl - 4m- 1  (3.7)

A number of observations suggest that for

k > k2 = 200m - l (3.8)

further models are needed for S. Bjerkaas and Riedel (1979) have

reviewed the data (particularly that of Mitsuyasu, 1977) and have

developed an elaborate model for the range (3.8). A simplified ver-

sion of this model is

3k
2

S M SR(k) 4.4 x 10- 5 (2
p -l) (1+i7)k2  i

k[k( l+-)]p2 (+exp(k-125u*)]

k > . (3.9)

Here

p - 3 - 0.4341n(u*) (3.10)

3-3



with u* in m/s and

km - 363 m-

The resulting spectrum using SD, SB, and SR in the ranges

described is illustrated in Figures (6), (7), and (8). Donelan and

Pierson (1987) model the regime k > k2 without using (3.9), but a

version of (3.6).

Models for the approach to equilibrium have been suggested by

Hasselmann et al (1976). An example is given for which

U(10) - 0, t < 0

- U., a constant for t > 0 (3.12)

A parameter is defined

3

0. - 120 (&t) 7 , Om I
U.

- 1, if above is less than unity. (3.13)

Then r in (3.4) is modified by replacing k* by

km - k.fRm 2  (3.14)
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Figure 3-1. Composite spectral model for S(1).
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Figure 3.2. Composite spectral model for S(k).
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The constant 0is replaced by

- - 2 x iO-3nm2/3  (3. 15)

The angle dependence in (1.5) was modelled in the first edition

of Phillips' book as

it 2

0 !! < ( < 3 IT

2 2

Tyler et al. (1974) and Mitsuyasu et al. (1975) recommend the form

G - C cos(2)s (3.16)
2

where C is a normalizing constant. Mitsuyasu finds that

5

s(k) Z 12( k*)4 (3. 17)

A more recent review has led Donelan et al. (1985) to suggest

replacing (3.16) by

G - - sech2(0uj (3.18)
2

2

o - 2.9(k*)3 I < 4
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- 1.2, otherwise. (3.19)

(Equation (3.19) represents my simplification of a more elaborate

representation.)

The diversity of spectral models and the recent dates on many

of the references will convince you that further models can be

expected. Comparison of the models described above suggests that

changes have tended to be more evolutionary than revolutionary in

this field and that the existing models can be useful even if of

limited precision.
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